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ABSTRACT

Five models are introduced for the factor analytic treatment of a
set of measures obtained for the same sample of persons on two different
occasions. The models differ in terms of the assumptions made regarding the
constancy of the (1) factor (actually component) score and (2) factor pattern
matrices ffcm occasion 1 to 2. Least-squares procedures are developed for
the estimation of the component scores and patterns under four of the models;
canonical correlation procedures are developed for the fifth. Illustrative
examples using these procedures are presented, and the research implications

of the hypotheses and procedures underlying each model are discussed.
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SOME NOTES ON THE FACTOR ANALYTIC TREATMENT
OF MEASURES OBTAINED ON TWO DIFFERENT OCCASIONS

A. Ralph Hakstian

University of Alberta

The purpose of this paper is not to develop a single, in some sense
preferred, procedure for the factor analysis of data matrices obtained on
twe occasions, but rather to bring into eclearer focus the parameters of
such a situation and to suggest possible analysis strategles depending upon
the assumptions the experimenter wishes to make about his data and the particular
questions he wishes to answer. In a strict sense, what is to follow is only
generically "factor analysis," as the estimation of communality implied by
the common—-factor model is absent. Instead, considerable use is made of the
Eckart=Young theorem (see Eckart & Young, 1936; Johnson, 1963), and the
component model is generally implied. We begin with a discussion of some
important characteristics and assumptlons associated with longitudinal data.
Following this, certain of the possible alternatives are selected and developed
into clearly operational analysis strategies. Empirical examples of some of
these strategies follow, and we conclude with a word concerning practical

implications.

1. Parameters of Longitudinal Data

One way to analyze longitudinal data is to treat occasion either as the
observational unit-=-on which scores on either variables or persons are
recorded——or as the attribute being measured, in conjunction with either a

single variable or a single person. Two dimensional designs invelving
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occasions by persons or variables constitute four of Cattell's [1952] six

factor analytic designs——D-, P-, S-, and T-technlques. For these designs to

lend stability to the obtained correlations and factors, however, a large
number of occasions is generally required, analogously to the requirement
of a reasonably sizeable person sample in standard, or R-technique, factor
analysis.

The experimenter may not wish to obtain factors either representing
occasion groupings or based on inter-occasion variation, but, instead may
require standard factors-—representing variable groupings and based on inter-
person variation--that are, in some sense, stable or present over two or more
occasions. Given the latter requirement, several alternatives exist. His-
torically, longitudinal studies involving the same battery of tests administered
to the same sample of persons on two or more occasions have reflected the
assumption of unchanging factor scores, with the changing factor pattern
matrices the locus of interest [e.g., Evans, 1967; Fleishman, 1957, 1960,

1966; Harris, 1963; Meyer & Bendig, 1961]. Tucker's [1963] application of
three-mode factor analysis to the measurement of change reflected the converse
assumption, that of unchanging pattern coefficients but changing factor scores.
The procedures derived by Corballis and Traub [1970] are based on both changing
factor scores and changing factor patterns, and an excellent discussion of

the conceptual merits of the differing assumptions can be found in this

latter paper. |

A feature of the model proposed by Corballis and Traub [1970] is that
although factor scores may change, from occasion 1 to 2, these factor scores
are orthogonal both within and between occasions. It is the opinion of the
present author that although the restriction to within-occasion factor

orthogonality may not be excessive, that to between—occasion orthogonality
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is unwarranted. The effect of this latter comstraint is to specify uniquely
the factor pattern matrices for the two occasions, thus precluding a simple
structure rotation if the initially obtained factor patterns are difficult
to interpret.

The purpose of the remainder of the present paper, then, is the
presentation of procedures for analyziﬁg”loﬁgitudinal data under several of the
assumptions, in turn, mentioned earlier. We are interested, exclusi%éiy,
in the experimental situation in which the same sample of persons 1s measured
on the same set of variables)on two different ocecasions. We thus are
concerned with the pretest—posttest or change paradigm so useful in psychological
and educational research, where the aim may be to isolate time-stable constructs,
to study correlates of the constructs at the two éiﬁferent times, to note
changes over time in constructs of interest, or perhaps, to observe the

effects on these constructs of intervening experimental treatments.

2. Derivation of Analysis Procedures

In this section, our aim is to consider, in turn, various experimental
situations which differ in the assumptions made about the constancy of the
factor score and factor pattern matrices over the two occasions. As has
been mentioned, the common-factor model is not implied as it was in the
paper by Corballis and Traub [1970]; that is to say we are not concerned
with the estimation of communalities as well as common-factor loadings.
Instead, the component model is implied, and extensive use is made of the
Eckart-Young theorem and its implications (see Eckart & Young, 1936; Johnson,
1963). In most cases, however, although the component model is implied, the
task is to find a least-squares fit to either two sets of components or two
matrices of pattern coefficients, or perhaps both.

In the various situations for which procedures are derived, we begin with

. 6
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two data matrices, gi and Z,, both of order N persons x n variables—-the
latter of which are standardized to have zero mean and unit variance--repre-
senting, respectively, occasions 1 and 2. The particular N persons and n
variables are, of course, common to both occasions. Standard scores on new,
derived components are contained in the matrices X

1

separately derived for each occaslon--or X--if a matrix common to both occasions

and §2==L£ Scores are

is hypothesized. These matrices are N ¥ r, where r < n components are con-
sidered adequate. We return to the issue of determing r later in the paper,

but will assume r is known in the procedures that follow. The component

pattern matrices, relating the X's to the 2's, are designated £i and F,, or
simply F, if a common pattern is hypothesized; all are nxr. In all cases,
the F matrices may be transformed to a simple structure pattern, P, nxr,

by a transformation matrix T, r x ¥, either orthonormal or in some cases, oblique.

Given the two data matrices, Zi and 52’ a standard principal=components

analysis of each is embodied in the following well~known equations:

X.F! + E. = X.T.P! + E_, and

2y =X{F +E =xTP+E

&8 , ,
- 7 P ' 1 i - | B
22 = X2F2 + E2 = XZTZPZ + EZ’

where E, and E,, both N x n, are matrices of "errors" of fit of the XF' or XIP'

matrices to the Z's. Given §ﬁ§§ or §j£5£5 of rank r < n, then by the Eckart-
Young [1936] theorem, tr[gégj] is minimal. 1In the specific instances that
follow, (1) is modified according to the specific hypothesis made.

We begin with the most restrictive situation, that in which, for

descriptive and conceptual reasons, we seek a single component pattern matrix

that relates a single matrix of component scores, in a least-squares sense,

to the two observed data matrices, 21 and gﬂ. Alternatively, we hypothesize
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a single set of occasion-stable components which are related by a single
pattern matrix—-—again hypothesized to be constant over occasions—-—-to the

observed data matrices. The Case I model, in place of (1), is

= ' o) 3 j
Zl XF' + El’ and
(2)
o wmt .
Z2 = XF' + EZ’
Our criterion is
= 1 ' = M
(3 91 tr[ElEl] + tr[EZEZ] minimum,

subject to the constraints

(4) . X'X/N = I.
Combining (3) and (4) yields
(5) - of = tr[2z,2, + 2,2, -2FK'z; -2FX'Z, + 2FX'XF'] + tr[AX'X/N -D)],

where A, r x r, is a matrix of Lagrange multipliers. Differentiating i% (see
Schinemann, 1965) with respect to the matrices of interest, and setting the

matrix of partial derivatives, in each case, to the null matrix yields

(6) a¢§/8F = —zzix =225x + 4FX'X = 0, and
(7) a¢i/ax = -2Z,F -22,F + 4XF'F + (1/N)X(A + A') = 0.

Combining (4) and (6) yields

F

(1/2N)(Zix + ZéX), or

(8) F (1/2N)z*'X,

where Z*, N x n, is given by 2, + gzg Substituting (8) in (7), we have
(9) (1/N)Z,Z*'X + (1/N)z,2*'X - (l/Nz)XX‘Z*Z*'X = Xq,

where the symmetric matrix Q = (A + A')/N. Combining the first two terms of

(9) and premultiplying by (1/N)X', we have

(10) (1/N%)X'2%2%'X = (i/N°)X'z%z%'X = Q = 0,

so that (9) may be rewritten




(11) (1/N)8X = (1/N°)Xx'8X,

where § = Z*Z*'., 1If we denote the canonical decomposition of S by
- wLw!

(12) § = WL™W',

choosing for X the matrix Eﬁﬂfsswhére .. Nxr, is composed of the first r
columns of W--satisfies both (11) and (4). The initial pattern matrix, F,
is given by (8).

It is unlikely, however, that the F matrix so obtained will be of great
interpretive value, and transformation to a simple structure will be
generally required at this point. Thus, we seek the transformation to a
simple structure, T, r x ¥, and our new pattern P, n x r, and matrix of
transformed components, X*, N x r, are given by

P = F(T'"L, and

(13)
X% = XT.

Both Z. and gg

unaffected. If transformed components that are still orthogonal are desired,

are approximated by X*P', leaving the criterion, EI in (3)

T is, of course, orthonormal and P = FT,.

Computationally, the process of finding the latent vectors, W, in (12)

can be hastened by obtaining the canonical decomposition of Z*'Z* as

. 2
(14) Zk'zx = VLV°, 5
and then obtaining W by
(15) W = z#vL"L,

Such a procedure is considerably faster than that indicated in (12), since

Z*'Z%, n x n, will generally be of much smaller order than will 2Z#Z%', N x N.

Case II

In this case, which is somewhat less restrictive than 1s Case I, we

hypothesize a constant pattern matrix over occasions, but permit the component

N 9
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scores to change, presumably as a function of maturation, experimental treat—
ment, or other possible causes, in much the same fashion that we would expect
the scores on the varlables themselves to change over time. The Case IT mddel is

= ¥
Zl XlF + El’ and

(16)

|
XZF + Ez.

Zy

As before, our criterion, %47 is

7 = tr[EiEi] + tr[EEE

]

¢II = minimum,

subject to the constraints

4 RTa _ = 3!
(18) XlX /N =1 XQXZ/N.

Combining (17) and (18) yields

& - S | > 1 > _— VAl ATy ] ' | |
(19) ¢II tr[ZlZ1 + 2222 ZFXIZl ZEXZZZ + FXlxlF + FX2X2F 1

+ trEAchiXI/N -I)] + tr[Az(Xéxz/N -],

where Ai and A,, both r x r, are matrices of Lagrange multipliers. Differentiating
'%T with respect to F, §1, andjgz, and setting the resulting matrices of partial

derivatives to zero, we have

F3 F = = ' — ' 4 15 = =
(20) 3¢}, /8F 22X, 22,X, + 2FX]X, + 2FX)X, = 0;
. Yh*E p = - ! -+ ' = 3
Y (21) 0%, /8%, 2z,F + 2K, F'F + (1/NM)X; (A + A{) = O;
’ ) % p = =) - b8 ¥ A 1 =
(22) acpﬂ/ax2 222F + 2X,F'F + (1/N)X2(A2 + AZ) 0.

Noting the constraints (18), we have, for (20)
§ . 1 =1 _ 1 ;
(23) F = (1/2N)(zlx1 + Z5X,),

which, when substituted into (21), yields

)+ (1/2N2)(X X'z, Z'¥, + X, X!z 2'X

A - 3 1] ]
(24) (=1/N)(Z.zIX_ + Z.Z)X 1%12121%4 1%52,21%;

17171 1722

;1 i 1
+ X 2232 + X, X 2

L ¥ =
1%1212%, + X X32,2,%,) + X,Q = 0,

where the symmetric matrix, Q = (Al + Ai)[ﬁ. Premultiplying (24) by (1/MN)X!,

we have

=
s
E

b
H

10
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2 ¥ ¥ Yer &1 _ 2 1 4 v 1 v
(25) (1/n >(Xlzlzlxl + Xlzlzzxz) (1/2N )(Xlzlzlxl + X3Z,27%,

= 1 4 5 L r <4 =
+ 1"{:|_Zl22){2 + XZZZZZKE) Q.

Thus, the left side of (25) is symmetriec, since Q is, and inspection of the
left side of (25) reveals that for this symmetry to exist, the matrix

§i§1§j§_ must also be symmetric. If we represent gigé by the Eckart=Young

factorization,

o 7 ot '
(26) 2122 WLV’ ,

where we have the canonical decompositions
2

sd > ¥ > 1] = 1 . -
ZZlele VL™ V', and
27) 9
' | - Sl A
2,252,231 WL W',
then choosing for X, the matrix %w, and for X,, Ngv , where W_and V_ contain
=1 - —r =2 — —r —r —r

the first r columns of W and V, respectively, renders §i§lgé§ symmetric and
satisfies (18). It should be noted that substituting (23) into (22), rather
than into (21), leads to exactly the same result. We then obtain F by (23).
We return to optimally efficient procedures for obtaining latent roots and
vectors of the rather large (N x N) matrices in (27) later in the paper.

As in the Case I situation, we may transform the obtained F to a simple
structure solution, P, in terms of either orthogonal or oblique components,
X*--by the formulas in (13). Such a transformation does not alter the minimal
value obtained for ¢, in (17).

Case III

This case differs from Case II in that instead of the component scores
changing while being related to the observed data by a stable, unchanging
pattern matrix, the scores are hypothesized to be constant over occasions,
but related to the changing observed data variables by changing pattern

matrices. Thus, instead of interest centering upon changes over time of

13




scores on variables that themselves are defined by unchanging linear composites
of known variables, as with Case II, the locus of interest with Case III is

the change over time in composition--in terms of the changing observed variables--
of the components, which themselves are hypothesized to be constant over
occasions. As was pointed out earlier, longitudinal factor analytic studies

have usually been based on this assumption.

The Case III model is

(28)

[l
I
bt
&
+
e

Our criterion is

= TR - ' =
(29) tr[ElEl] + tr[EzEg] minimum,

¢ITI
subject to the constraints

(30) X'X/N = I.
By combining (29) and (30), we have

= tr{Z!Z2_ + Z'Z_ - 2Z!XF! - 2Z!XF! + F . X'"XF! + F X XF

171 272 171 272 1 1 ]

(3L

\M‘

*

*T11
+ tr[AX'X/N - )],

where, as before, A, r x r, is a matrix of Lagrange multipliers. Differentiating

with respect to X, F., and F,, and setting the rasulting matrices to the

h%
11T £y ¥,

null matrix, we have

= - ’ 4 ] 1] +

(32) III/ax 2lel 22252 + ZXFlFl + 2XF Fz + (1/N)X(A AYY =
33" & ! = 27! 1% 1 = .

(33) 3¢III/3F1 zzlx + 2F1X X = 0;

(34) 3¢III/3F = —222x + 2F2X X=0.

Noting the constraints, (30), we may write for (33) and (34)

Fy

il

ZiX/N, and
(35)

1
F zzx/N.

2

Substituting (35) into (32) yields
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o '*' _ 4 2 1 T —_
(36) (z/w)(z z + zz 2)x - (2/NTH)EX (z1 1 + z )x = XQ,

where the symmetric matrix @ = (A + A')/N. By reasoning similar to that
employed in the Case I solution, we note that by premultiplying (36) by
(1/N)X', we have

(37) (z/v ) [X! (z,2 ' + ZZZé)X] - (z/N yI[X! (z,2 ' + zzz§)x] =Q =0,

so that (36) and (37) together imply that

(38) (1/MUX = (1/8%)XX'UX,

where U = _131 + Zzié If we denote the canonical decomposition of U as
, 2.,

(39) U =VL"V',

b

then choosing for X the matrix E_2T==where s N x r, is composed of the first

ZT
r columns of V--satisfies both (39) and (30). We then obtain £1 and 2 by (35).
The matter of transforming the obtained F 1 and £2 matrices to a simple

structure Is not as straightforward as with Cases I and II, since unlike

these applications, Case III involves two pattern matrices, but a single

matrix of component scores. For these scores to remain identical over

occasions after transformation they must be transformed by the same matrix,
which implies that a single matrix, T, must be found that results simultaneously
in optimal simple structures for both the occasion 1 and occasion 2 pattern
matrices. Although the problem would best be solved by optimizing a two—matrix
analytic criterion function--for example, a simultaneous two-matrix varimax

function--we offer the following rather simplistic alternative. Form

(40) Fx = (1/2)(F + Fy)»

that is, average the unrotated patterns. Next, we would derive T as maximizing

the criterion function of choice when applied to F*. Then

X* = XT;
5 = '!_'l.
El = Fl(T ) H
=1
= ikl
P2 = FZ(T )

.13
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where, as before, if an orthogonal transformed solution is desired, Ej = §§£:
It is undoubtedly clear to the reader at this point that we have assumed

in the first three cases that a basiec and enlightening atructure common to both

occasions exists——either in the form of component scores or pattern matrices

relating these scores to the observed data. Needless to say, if there is

such a substantial change from the Z, to the Z, matrix that no such common

structure exists, then attempting to fit matrices of scores or pattern

coefficients te the two sets of data will be unsuccessful.

Obtaining Latent Roots and Vectors for Cases II and IIT

The prospect of having to obtain the latent roots and vectors of the N x N
matrices implied by Cases II and III, where the number of subjects can be
expected to be fairly large, say 100 or more, may seem, at first, prohibitive,
in terms of computing time. Certainly, if one were to employ the well-known
Jacobi procedure, which yields all non-zerc roots and vectors simultaneously,
the computation time involved would be prohibitive. In such instances,
Hotelling's [1936] procedure is much more efficient than the Jacobi method
and certainly accurate enocugh.

As a check on the speed of the Hotelling procedure, a symmetric matrix
of order 98 x 98 was factored into latent roots and vectors, with the process
stopped after the first r = 5 vectors had been obtained. The GPU time on
the University of Alberta System 360/67 computer for this problem was
slightly over 30 seconds, a not excessive time requirement relative to that
of most factor anmalytic computations.

Case IV

The researcher may wish to permit both the component scores and the
pattern matrilces to vary between occasions. The procedures develmﬁed by
Corballis and Traub [1970] would be appropriate in such an instance-—the

model developed involving components as a special case--but the fact that no

- 14

Xt et



O

ERIC

Aruitoxt provided by Eic:

12
simple structure solution is generally possible must be considered a shortcoming.
In any case, if mno restrictions to equality are placed on either the component
scores or pattern matrix, varlous criteria may be considered to identify an
optimal pair of scolutions. One such criterion involves obtaining true components
for each occasion--that is linear composites of the observed data matrices
(unlike in Cases I, II, and III, where the observed data are only approximated
in a least-squares sense)--that are maximally related in a pairwise sense.

This criterion~-cliearly expressible as a canonical correlation problem—
constitutes our Case IV,

The Case IV model is as in (1), which we repeat here

= r 1 i s -
z, = X,F; + E,, and
8]
= ' + ¥
Z2 XZFZ + EZ,
The criterion is
= - ' =
(42) b1y tr[XlXZ/N] maximuom,

subject to the constraints, expressed earlier,

¥ - 1
(18) X1X1/N =T XZXZ/N.

It should be clear that in (1) above, if all n components are obtained for

both occasion 1 and occasion 2, the E, and EQ matrices will be null.

As was noted above, 51 and §Q are N x r linear composaites of, respectively,
Z, and Z,. We seek the matrices K, and K,, both n x r, such that
Zlkl = Xl, and
(43)
Zsz = XZ’

and the conditions (42) and (18) are met. Canonical correlation analysis
yields matrices K¥, §§, 55, and §§, where the respective columns of zi and g%
are, indeed, maximally correlated, and columns within 53 and 53 are mutually

uncorrelated, but, in general, the new variates, while certainly having zero

. 15
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mean, do not have unit variance. Since
* = Xk _ 2
21K1 Xl, and
(44)
(de = Yk
2,83 = %3»

the diagonal matrices of reciprocal standard deviations of the ;i and E;
variables are obtained by

[diag(gf'ﬁlﬁi)];%, and

o
]

(45)

D, = [diag(Ki'RzKi)]s%,

and we have, for the matrices of standardized component scores, X, and X,,

Xl ZlKlDl, and
(46)

7 = % i

XZ ZZKZDZ.

From (46), initial pattern matrices, gi and EQ, are obtained by

= 7! = %]
Fl ZIXIIN RlKlDl, and
(47)
- 7! = *
Fz ZZXZIN R2K2D2.

In the interests of preserving the orthogonal characteristics of the linear
composites, and also ensuring the comstancy of the value of ¢, in (42),
we may seek, at this point, an orthonormal transformation matrix, T, which

when applied to F. and F renders a reasonably interpretable simple structure.

1 =2?
Since we are seeking a single transformation matrix to be applied to both
pattern matrices, we are faced with the same situation as in Case III. Again,

it is suggested that the F* matrix in (40) be that for which the T matrix

is established. We then have

(48)
so that

- N1 = e tyt N1 = tr[X'X. ].
(49) er[¥i¥,/N] = er[TT'X]X,/N] = trlX;X,/N]

16
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We note that although an orthonormal transformation does not alter the
value of the criterion, iiV’ in (42), the individual diagonal elements of
¥,¥,/N will not, in general, be the same as those of X X,/N, the latter
diagonal elements being, of course, canonical correlations between the component
scores for occasion 1 and those for occasion 2. It is noted, finally, that
a Case IV solution could be obtained by using the Orthogonal Procrustes
procedures outlined in detail Ly Schénemann [1966]. Using such procedures,
we would seek orthonormal transformations to be applied to the X and__§2
matrices obtained by standard component analyses of 31 and §2¥=tfansfgrmaticns
that would satisfy (42). We judge the procedure outlined in this section
as more direct.

As with Case IV, with Case V we hypothesize that both the component scores
and pattern matrices vary between occasions. With Case V, however, we attempt
to bring both pattern matrices, rather than matrices of component scores, to
as similar a position as possible. As with previous cases, a simple structure
resolution is possible.

The Case V model is, again, as in (1)

Zl = XlFi + El, and

8]
= X F' +

ZZ XZFE + EE'

Our criterion, however, is
b = ' = 1

(50) ¢V tr[ElZElz] minimum,
where E,, = F, - F,. Our constraints are as in (18),

' - - i/
(18) X X /N = I = XX, /N.

If we let F. = éiéing and F,

1 5 = iéézfﬂf the criterion, (50), may be written

subject to the constraints, (18), as

= 2 ! 1 1 } - 1 1 3 ' -
(51) ¢§ (1/N )tr[xlzlzlxl + xzzzzzx2 2xlzlzzx2] + tr[Al(XlxllN I)]

- 17 + trA, (X§X, /N -1)],
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where Al and Az, T x r, are matrices of Lagrange multipliers. Differentiating
§$ with respect to_’}'g_l andg_gi2 and setting the partial derivatives to the null

matrix, we have

il
<
]
2
o

(52) a¢$/axl = (Z/N )(z 1 1 - zlzéxz) + (1/N)X1(Al + Ai)

]
[}

(53) a¢§/axz = CZ/N ) (2,2 2 X, - zzgixl) + (1/N)X2(A2 + A))

Letting the symmetric matrix le +_Ai)/2 = 31, and premultiplying (52) byzéi,

we have, for (52),

Z.Z

! -
Xl 1 X X

(54 2% 1%1%1% =
Equation (54), in addition to similar manipulation of (53), reveals that, by

a symmetry argument like that used in the somewhat similar Case II, the Case V
criterion is satisfied, subject to the constraints noted, by taking for §1

and X the matrices, respectively, N%W, and N%V”, where W_and V_ are composed
* — —r — —r - -r

2,

of the first r columns of W and V, obtained by the Eckart-Young factorization

given in (26),

] 1 i
(26) 2,25 = WLV'.
The Ei and £2 matrices are subsequently given by
s o ..
El lel/N, and
(55)
= L
F, zzxz/u.

At this point we would likely seek simple structure resolutions for

Ei and EQ! If a single orthonormal transformation, T, is applied to gi and gé,

yielding P. and P the criterien (50) is unaffected (although the individual

1 =37
diagonal elements of giinz certainly are affected), since if Eiz = F,T - F,T
= <£l - £2)£3 then
(56 Ex'E% = 7 s . = -
{56) r[E4 EX,] = tr{(E,,T)" (E;,T)] = tr[T'E ,E,,T] tr[E},E 1.

We thus recommend that the same simplistic procedure outlined with Cases III

.
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and IV solutions be used, in which we form F* = (1/2)Q£1 + EQ)? and then rotate
F* to a position satisfying some analytic orthogonal simple structure criterion.

is

=

We then have, for interpretive purposes, 51 = 312 Zad £Q = F_ T, where

the orthonormal transformation applied to F¥,

As with Case IV, a Case V solution could, alternatively, have been
obtained by applying Orthogonal Procrustes procedures [Sch&nemann, 19661].
Such procedures would be applied to Ei and EQ matrices obtained by standard
component analyses of 31 and_ggi Again, we judge the technique outlined in

this section to be more direct.

The Problem of the Number of Components to Reiain

The decision regarding the appropriate value of r in the analysis
procedures just described may be seen as either possibly the result of the
analysis procedures themselves or the result of an assessment of the
congruence between components derived by standard component analyses on the
two occasions. At this time not enough experience has been gained with
data to suggest rules of thumb for deciding the correct number of components
when the various cases described are adopted and the analysis proceeds
exactly as outlined. It is likely, furthermore, that different rules will -
apply in the different cases. In short, few suggestions can be made at this

time for deciding on the appropriate number of Case II components, for example,

s a result of a Case II analysis. As more experience is gained involving

real data and the analysis procedures described, it is hoped that some suggestions
regarding the number of components will come out of these procedures themselves.
As is noted later, an exception to the above situation may be Casg Iv.

The other alternmative is to perform principal component analyses on the
Zl and Z, matrices, and apply current rules of thumb to ascertain r; sub-
sequently, with a knowledge of r, the experimenter would apply the appropriate

o procedures as previously described. An advantage exists with longitudinal
Wi;ﬁﬁ :153

e o ] e e =



17

data in deciding on r, since the notion of stability over time can be added to

the other various rationales. As one possibility, the experimenter could
faétar_gl and 32 into latent roots and vectors and apply the Kaiser-Guttman
rule of accepting for r, the number of latent roots greater than one. If this
rule led to the same value of r for the two occasions, some faith could be
placed in this particular value. On the other hand, if the number of latent
roots greater than one differed on the two occasions, other tests would be
indicated.

Cross=correlating the components obtained on the two occasions, gi and EE’
is another possibility that could be employed either with or without the
aforementioned inspection of latent roots. If the canonical decompositions of

R, and R, are designated, respectively, ngigi, and ngggé, and the matrix

1 2
of correlations between variables on occasion 1 and 2 is designated Biz’
then the matrix

-1 1

(57) XX /N = My QiRlZQZMg
contains the cross—occasion correlations of components. If we arrange the
rows and columms of this matrix to maximize tr[£i§glﬂj, then insgectign of
the diagonal elements would indicate at what point the components at occasion 1
cease to have clearly ildentifiable pairmates at occasion 2. We might regard
these between-occasion component correlations as component stability cocefficients
and take for r the number of components for which the stability coefficient
exceeds some minimal level of reliability, for example, .7.

Perhaps a better approach than that just described would be to determine
the maximum congruence that can be obtained between columns of §1 and Eg.
The canonical correlation procedures outlined in Case IV would provide a way
of applying this rationale. We would simply obtain the matrices 31 and EQ as
given in (46), with the one difference being that we would continue to obtain

Q
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components until the canonical correlation dropped below some predetermined
value, k, again, perhaps, .7. The value of r would be the number of canonical

correlations greater than k.

Summary of the Procedures Proposed

The preceding analysis procedures are brought together in Table 1, in
the interests of presenting a unified view of these techniques. ',I‘hc?i__E_.1 and EQ
matrices given in the column headed "Criterien" are, in general, matrices
of discrepancies between the observed data matrices, §1 and éﬂ’ and their
reproduction from respective products of component scores and patterns.
The '"solutions" given will, for the most part, require augmentation from
material in the text. It may be worth noting, finally, the great similarity

between Case II and Case V.

3. Empirical Examples

In this section results of solutions based on three of the five cases
developed earller are presented. Each 1s discussed in turn.

A Case I Solution ;

Data for the application of Case I procedures were constructed by
computer simulation techniques. This alternative was found necessary since
very few longitudinal studies were found in the literature, and those data
that were available did not include the original score matrices, needed for
a Case I solution. The results of the Case I analysis appear in Table 2.

First, a 50 x 3 matrix was constructed using random number generation.
Next, by rescaling of the columns and a roots and vectors decomposition, a
matrix, X, of '"true" component scores, 50 x 3, was obtained such that each
column had exactly zero mean, unit variance, and zero intercorrelation with
each other column. A "true" rotated pattern matrix, P, displayed in Table 2,

was introduced, and the product XP' formed, yielding a 50 x 9 matrix. Finally,

<%
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TABLE 2

Correlations within and between Occasions, Correlations between True and Estimated
Component Scores, and True and Estimated Rotated Pattern Matrices for
a Case I Solution Using Artificial Data (Decimal Points Omitted)

Correlations of Variables

Occasion 1 (31} Occasion 2 (gg)

1 100 100
2 75 100 73 100
3 78 74 100 74 59 100
4 -09 -09 -01 100 -11 =07 11 100
5 -04 =04 =07 67 100 =25 =17 -04 72 100
6 -12 =14 =07 67 69 100 =11 -02 13 72 72 100
7 -11 -01 02 01 03 =22 100 ' 10 20 12 02 -03 14 100
8 =07 06 03 07 05 -16 68 100 -13 06 -11 -06 04 11 &7 100
9 -14 =14 -04 07 08 00 73 &0 100 =19 08 -08 -03 -05 14 68 68 100

Correlations between Variables on Ocecasion 1 Correlations between True and

(Rows) and Occasion 2 (Columns) (312) Estimated Rotated Component Scores
1 82 78 63 -09 =15 =08 =01 =-21 -25 Estimated Component
2 80 74 68 =09 -19 -07 -02 =-18 -21 - True - o
3 73 75 65 =04 -17 02 07 =12 -10 Component 1 IT III
4 -09 -02 21 67 71 80 08 08 05
5 -03 -06 20 64 66 62 07 18 -04 I 967 -031 022
6 -13 =09 06 69 73 65 =05 =08 -14
7 -02 17 09 -06 =07 03 72 73 71 . 11 026 967 -006
8 -04 16 05 05 -03 13 65 65 64
9 -05 16 03 02 =07 08 76 71 72 III =021 016 961
Rotated Pattern Matrices
True (P) Estimated (P)
I 11 III I IT  III

1 80 00 00 90 =09 =10
2 75 00 00 88 -08 05
3 70 00 00 85 07 0l
4 00 80 00 00 87 02
5 00 70 00 =06 85 01
6 00 75 00 =03 86 =01
7 00 00 75 08 -01 88
8 00 00 65 -03 03 84
9 00 00 70 -08 00 87

<3
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two matrices of ”err@rs"=fﬁl and E,, both 50 x 9, of (2) were constructed using

random numbers. These matrices were then deviated and rescaled so that each
column had zero mean and variance .25. The matrices XP' + E, and XP' + E, were
then formed and column rescaled to have unit variance, yielding, respectively,
gl and Eg‘

The resulting R_, 523 and 512 matrices appear in Table 2. Using formulas
(8), (14), and {(15), matrices of, respectively, estimated pattern coefficients
and component scores Were obtained. A normal varimax rotation was applied

to the obtained pattern, yielding the gzmatrix in Table 2. The obtained
orthonormal transformation was then applied to the estimated component scores.
These transformed component scores were then correlated with the "true"
component scores constructed earlier, with the resulting correlations presented
in Table 2. Separate component analyses of Eﬂ a.ndgi2 ensured that a decision
of three components would be reached, and this value for r was retained
throughout the analyses.

It is probably true that the great congruence between the "true' and
estimated elements of this example are, in large part, due to the simplicity
and artificiality of the data, even though an attempt was made to simulate
real conditions by generating variables with reliability only approximately
.70 or so, as can be seen from the 512 matrix. In any case, it appears
true that if all that changes from occasion 1 to occasion 2 is error, and
that time-stable wvariables and compoments can be reasonably hypothesized, the

Case I solution is useful in delineating this stable configuration.

A Case III Solution

Data for the application of Case III procedures were constructed in
somewhat the same manner as for the Case I example. It will be recalled
that the component scores are hypothesized to be constant in Case III, with

possibly changing patterns. The same component score matrix, X, used with

<4
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Case I was postmultipiied by the trensposes of two different 'true' rotated
patterns, Ei (identical to the P matrix of the previous example) and £2, for
the two occasions. These patterns, as well as the other matrices of interest
for this example, are displayved in Table 3. It will be noted that El and ££
differ somewhat, reflecting the fact that factorial complexity greater than
one-—for variables 3,5, and 8--and more broadly defined factors are present
at occasion 2, but not occasion 1. Again, two 50 x 9 matrices of random error—-
mean zero, variance .25 by columﬂs—fgl and £2 of (28), were constructed, and
were added to Egi and XP!, respectively. The resulting matrices were then
column rescaled to have unit variances, yielding, raspectivelyj_gl and gzi
Clearly, although the underlying three components (the value of three
for r was again confirmed from analyses of R, and 32) are stable over the two
occasions, the variables themselves have changed more than ramdomly between
occasions, as can be seen from the R,., matrix. The initial pattern matrices
were obtained using (35), after the initial matrix of component scores had
been computed using (39) in connection with the Hotelling procedure discussed
earlier. The initial patterns were combined using (40) and a normal varimax
rotation was performed on the resulting F* matrix. The transformed patterns,
as well as transformed component scores, were obtained by (41).
As 1s seen in Table 3, the three obtained vectors of component scores
were very close to the "true" scores, and the estimated rotated pattern
matrices for both occasion 1 and occasion 2 were extremely close to the
corresponding ''true" patterns. Once again, however, the great similaricy
bétween "true" and estimated elements in this example is likely, to some extent,
a function of the artificial nature of the data. If, however, the experimenter
wishes to hypothesize—-—for theoretical or conceptual reasons—--unchanging
underlying components, although the variables themselves can be observed to

change somewhat from occasion 1 to occasion 2, the Case III solution may be

ERIC
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TABLE 3

Correlations within and between Occasions, Correlations between True and Estimated
Component Scores, and True and Estimated Rotated Pattern Matrices for Each Oeccasion
for a Case III Solutionm Using Artifieial Data (Decimal Points Omitted)

Correlations of Variables

Occasion 1 (El) Occasion 2 (32)
1l 100 100
2 72 100 66 100
3 72 68 100 50 58 100
4 -06 09 07 100 =10 =08 42 100
5 =08 06 02 66 100 06 13 38 47 100
6 01 07 09 70 62 100 -23 =09 31 69 44 100
7 15 04 14 01 04 04 100 14 04 17 07 46 =09 100
8 08 02 10 06 06 -08 70 100 54 52 41 10 49 =08 48 100
9 06 05 -02 09 09 01 61 68 100 04 =06 04 =01 42 -18 68 47 100
Correlations between Variables on Occasion 1 Correlations between True and
(Rows) and Occasion 2 (Columns) (312) Estimated Rotated Component Scores
1 73 75 43 -14 06 -22 15 56 03 Estimated Component
2 68 70 58 -06 10 =05 12 53 00 True
3 65 75 48 -05 03 =16 07 46 =02 Component 1 II IIT
4 =09 05 52 66 57 63 05 08 =11 o
5 =03 =01 46 73 54 61 10 09 09 I 968 -042 069
6 =06 10 47 77 50 60 02 04 =02
7 20 11 1z 01 50 =23 72 54 69 I1 042 967 =053
8 09 09 =01 ~12 51 =15 67 41 61
9 03 02 09 -08 48 =04 53 45 67 III =060 064 960

Rotated Pattern Matrices

Occasion 1 Occasion 2

True (21) Estimated (gi) True (52) Estimated (EQ)

I II III I 1I III I II IIZ I II III

1 80 00 00 85 ~-14 12 80 00~ 00 84 =14 13

2 75 00 00 83 00 05 75 00 00 89 =02 05

3 70 00 00 69 =04 04 50 50 00 67 53 07

4 00 80 00 08 81 00 00 80 00 =02 88 -05

5 00 70 00 03 69 06 00 50 50 09 65 59

6 00 75 00 10 78 =04 00 75 00 =11 82 -19

7 00 00 75 06 00 76 00 00 75 05 07 83

8 00 00 65 -01 -02 74 50 00 50 59 07 60
9

00 00 70 -03 04 61 00 00 70 -08 -02 86
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used to implement this hypothesis.

A Case IV Solution
In contrast to the examples used to illustrate Cases I and III, our data

for the application of Case IV procedures were those gathered by Meyer and

and Traub [1970]. As with the latter study, the number of components (factors,
in the Corballis and Traub study) was determined to be two. 8Separate component

analyses of the Ry and R, matrices showed one latent root greater than one for

31 and two, for Eg’

yielded the following canonical correlations: .89, .74, .58, .45, .37. Thus,

The canonical correlation analysis subsequently conducted

by finding maximally congruent linear composites, we found two components in
each set that correlated highly encugh to suggest that we were likely dealing
with the same two constructs on each occasion. Ihe!gl, 52, and_glz matrices,
as well as the other matrices of interest, are displayed in Table 4.

The unrotated pattern matrices in Table 4 were obtained by the procedures
given in (44) through (47). A normal varimax transformation was applied to
these patterus, with virtually no improvement in simple structure. Inspection
of the plane spanned by the I-II vectors for each occasien revealed that no
true simple structure resolution is possible with these data. It will be
noted that although the two component cross-occasion correlations were altered
in the transformation, their sum was unaltered. Inspection of the two unrotated
(or rotated) pattern matrices reveals that a high degree of congruence was
obtained, with the interpretation of the components likely idantical on the
two occasions. Finally, some of the difference between the present solution
for these data and that given by Corballis and Traub [1970] is due to the

fact that the latter authors derived components in terms of disattenuated

correlations.
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TABLE 4

Correlations within and between Occasions, Correlations between Occasion 1
and Occasion 2 Components, and Occasion 1 and Occasion ? Pattern Matrices
for a Case IV Solution Using the Meyer and Bendig Data (Decimal Points Omitted)

Correlations of Variables

Between Occasion 1 (Rows)

Occasion 1 (31) Occasion 2 (52) and Occasion 2 (Columns) (312)

1 100 100 81 35 42 41 24
2 37 100 34 100 35 65 32 14 15
3 42 33 100 46 18 100 49 20 75 40 17
4 53 14 38 100 56 06 54 100 58 -04 46 73 15
5 38 10 20 24 100 24 15 20 16 100 32 11 26 19 43
Correlations between Occasion 1 and Occasion 2 Components
Unrotated Components Rotated Components
7 7 Occasion 2 Component Occasion 2 Component

Gcc§sion_; T II I 11
Component

I 886 000 859 056

I1 000 743 056 770
Pattern Matrices
Ocrasion 1 Oceasion 2

Unrotated Rotated Unrotated Rotated

I II T 11 I I I 11
1 87 11 73 48 91 - =02 83 38
2 48 64 15 78 38 77 00 85
3 77 04 68 37 77 =05 72 29
4 69 -62 89 -26 64 =57 82 =23
5 41 04 15 21 31 09 24 22

28
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4. Conclusions

Procedures have been developed and in some cases illustrated for the
factor amalytic treatment of data matrices, involving the same subjects,
obtained on two occasions. The specific techniques have differed in terms
of whether or not the component scores and/or pattern matrices are hypothesized
to be stable or unchanging over time. Good reasons can be advanced for the
hypothesis of stable scores and patterns (our Case I) in some situations where
only constructs that are constant relative not only to scores of the subjects
measured, but also to the composition of these constructs in terms of linear
combinations of the observed wvariables are of any theoretical interest. On
the other hand, it is conceivable that situations may arise in which only omne
of these matrices may reasonably be expected to be constant. That matrix
may be the component pattern (Case II), with primary interest in changing
scores of the subjects (relative to the respective group mean; changes in
group elevation are not of concern) over time on these constructs whose
composition over time is hypothesized not to change, or it may be the matrix
of unchanging scores (Case III), in which the interest lies in the changing
composition (relative to the observed variables) of these unchanging constructs
(relative to the subjects involved). If the experimental situation suggests
that both scores of the subjects and composition relative to the variables
can be expected to change over time, our Cases IV and V may be appropriate,
Case IV if we wish to maximize the congruence of the changing scores, and
Case V if we wish as similar composition of the (changed) factors as possible.
In ea;h case, provisions have been made for a simple structure resolution.

In all cases except Case IV, least-squares estimates have been provided for
all hypothesized matrices.

Although the procedures developed for Cases I, IIL, III, and V are least-

squares, we have not attempted to provide techniques for evaluation of the
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hypotheses embodied in the various cases. It appears conceivable that
likelihood ratio procedures could be developed to estimate the goodness-~of=
fit of the reproduced data arrays——in terms of the estimated matrices--to

the observed ;1 and ég matrices,
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